هر چی دیدم خوبه میزارم برات ....میخرم برات

گنده ترین ها تقدیم تو باد

همانند سازی زنتیکی

مقدمه

پیشرفتهایی که در سده اخیر نصیب علم ژنتیک شده است، تا حدود زیادی مرهون مطالعه و بررسی وراثت در باکتریها است. امروزه ثابت شده است که مکانیسمها ژنتیکی در باکتریها از نظر واکنشهای شیمیایی مشابه یاخته‌های یوکاریوت است. پروکاریوتها موجودات ساده و مناسبی برای بررسیهای ژنتیکی هستند. زیرا در آنها تنها یک مولکول DNA در هر یاخته وجود دارد و این DNA دارای ساختار کروموزمی پیچیده‌ای نیست. استفاده از میکروارگانیسمها به عنوان ابزار مطالعه ژنتیکی دارای نقاط ضعفی نیز است.

اول آنکه کوچکی اندازه این موجودات بررسی ویژگیهای ظاهری هر یاخته را دشوار می‌سازد. دوم آنکه تولید مثل جنسی در این موجودات وجود ندارد و یا بطور ناقص دیده می‌شود. پس از اینکه ساختار مولکولی DNA که نخستین بار بوسیله واتسون و کریک معرفی و ارائه شد، نحوه بیوسنتز آن را نیز در یاخته مشخص کردند. در اواخر سالهای 1950 ، کریک اصل بنیادی را مطرح کرد. این اصل بیان کننده چگونگی انتقال اطلاعات ژنتیکی از مولکول DNA به RNA و ترجمه آن در پروتئینها است.

img/daneshnameh_up/7/7b/14.png

 

همانندسازی DNA

در مطالعات اولیه برای همانندسازی سه الگو مطرح شد که شامل الگوهای حفاظتی ، نیمه حفاظتی و پراکنده است. در الگوی حفاظتی از روی مارپیچ دو رشته‌ای DNA ، یک مولکول کامل DNA ساخته می‌شود. در الگوی نیمه حفاظتی ابتدا دو رشته DNA از هم باز شده و در مقابل هر یک از رشته‌ها ، رشته مکمل ساخته می‌شود. در الگوی پراکنده ابتدا مولکول DNA به قطعاتی تقسیم می‌گردد و هر یک از قطعه رشته مکمل خود را سنتز می‌کند. واتسون و کریک با پژوهشهای خود بر روی مولکول DNA ، الگوی نیمه حفاظتی را منطقی و تنها راه همانند سازی می‌دانستند. سپس مزلسون و استال با انجام آزمایشهای بسیار ظریف و مهم ، درستی چنین الگویی را به اثبات رساندند.

آزمایش مزلسون و استال

مزلسون و استال برای اثبات فرآیند همانند سازی آزمایشی انجام دادند که به شرح زیر می‌باشد. آنها ابتدا یاخته‌های باکتری اشرشیاکلی را در محیط کشت ویژه‌ای که نیتروژن آن از نوع سنگین (N15) بود، برای زمان معین کشت دادند و سپس یاخته‌ها را به محیط کشت عادی که نیتروژن آن از نوع سبک (N14) بود، انتقال دادند و در محدوده‌های زمانی معین از یاخته‌های نسلهای اول ، دوم و سوم حاصل از محیط کشت جدید ، نمونه برداری کرده و DNA آنها را به روشهای اختصاصی جدا ساختند. نمونه‌های DNA بر روی گرادیان (شیب) چگالی کلرور منیزیم سانتریفوژ شده و در این روش ترکیبات مختلف بر اساس چگالی آنها جدا سازی می‌شوند.

بدین ترتیب DNA واجد وزنهای متفاوت از یکدیگر جدا می‌شوند. DNA معمولی که N14 دارد (DNA سبک) به علت داشتن چگالی کمتر در بالای لوله قرار می‌گیرد. در حالی که مولکول DNA با (N15 سنگین) در محلی پایین تر از DNA سبک واقع می‌شود. DNA های واجد مقادیر متفاوت N15 و N14 نیز در بینابین این دو حد جای می‌گیرند.

با کشت یاخته‌های دارای DNA واجد نیتروژن سنگین در محیط کشت حاوی نیتروژن سبک مشاهده می‌شود که مولکول DNA ماهیت سبک - سنگین پیدا می‌کند. یعنی دو رشته DNA کاملا از هم باز شده و رشته‌هایی در تکمیل هر یک از دو رشته قبل ساخته می‌شود. این رشته‌های جدید همگی دارای نیتروژن سبک (محیط کشت جدید) هستند. با ادامه کشت در نسلهای دوم و سوم ملاحظه می‌شود که از میزان DNA سبک - سنگین کم شده و به DNA سبک افزوده می‌شود.

نتیجه آزمایش مزلسون و استال

مزلسون و استال با چنین مشاهداتی نتیجه گرفتند که همانند سازی در مولکول DNA به طریق نیمه حفاظتی صورت می‌گیرد که مستلزم باز شدن دو رشته از هم و سنتز مولکول DNA جدید در مقابل هر رشته قدیم است. این پدیده به نام همانند سازی مشهور است.

آنزیمهای لازم در همانند سازی

آنزیمهای پلیمراز

آنزیمهایی هستند که پلیمر شدن زنجیره‌های پلی‌نوکلئوتیدی را کاتالیز می‌کنند. تا کنون سه نوع آنزیم پلیمراز به نامهای Ι و ΙΙ و ΙΙΙ جداسازی و مشخصات آنها ارائه شده‌اند. از بین آنها آنزیم پلیمراز ΙΙΙ نقش اصلی را در سنتز DNA دارد. از خصوصیات مهم آن ، این است که منحصرا نوکلئوتیدها را در جهت '5 به '3 بهم متصل می‌کنند و در جهت عکس نمی‌تواند عمل کند. آنزیم پلیمراز ΙΙ نیز در مرحله‌ای از سنتز DNA وارد شده و سنتز را در جهت '3 به '5 پیش می‌برد. و آنزیم پلیمراز I عمل ترمیم همانند سازی را انجام می‌دهد.

آنزیم هلیکاز

این آنزیم به مولکول DNA دو رشته‌ای متصل شده و با عمل خود موجب باز شدن دو رشته از یکدیگر می‌شود.

آنزیم لیگاز

در مرحله‌ای از سنتز DNA وارد عمل شده و دو رشته DNA را بهم پیوند می‌دهد.

آنزیم پریماز

آنزیمی است که در ساختن قطعه کوچک RNA پرایمر ، هنگام همانند سازی وارد عمل شده و نوکلئوتیدهایی از نوع اسید ریبونوکلئوتید را به یکدیگر متصل می‌کند. تعدادی پروتئینهای ویژه وجود دارند که پس از باز شدن دو رشته DNA از یکدیگر به محلهای باز شده متصل شده و مانع اتصال مجدد دو رشته به یکدیگر می‌شوند.

img/daneshnameh_up/c/cb/Molecules-01.gif

 

همانند سازی متوالی

در روی مولکول DNA نقاطی وجود دارند که همانند سازی از آنها آغاز می‌شود. این نقاط مبدا همانند سازی خوانده می‌شوند. در DNA باکتریها ، یک مبدا همانند سازی و در DNA موجودات عالی ، تعدادی زیادی از این مبدا وجود دارند. هنگام همانند سازی ابتدا آنزیم هلیکاز به مارپیچ دو رشته‌ای DNA متصل شده و پیچش DNA را در آن نقطه باز می‌کند. پرتئینهای DBP به ناحیه باز شده هجوم آورده و با اتصال به DNA تک رشته‌ای مانع از جفت شدن بعدی DNA می‌شوند.

ناحیه‌ای را که هلیکاز به آن متصل می‌شود، چنگال همانند سازی می‌نامند. همانند سازی به صورت دو سویه است. آنزیم پلیمراز ΙΙΙ که اتصال نوکلئوتیدها را به یکدیگر به عهده دارد، فقط می‌تواند همانند سازی را در جهت 3 به 5 پیش ببرد. در این حالت دو رشته مولکول DNA در خلاف جهت یکدیگر هستند. در نتیحه رشته‌ای که در جهت '5 به '3 سنتز می‌شود، به راحتی سنتز DNA را آغاز کرده و پیش می‌برد. این رشته به نام رشته راهنما معروف است. در همانند سازی این رشته را متوالی می‌نامند.

همانند سازی نامتوالی

در مولکول DNA رشته‌ای که '5 آزاد دارد، سنتز DNA طبق آنچه درباره رشته راهنما ذکر شد، انجام نمی‌گیرد. دلیل آن این است که آنزیم پلیمراز ΙΙΙ نمی‌تواند نوکلئوتیدها را در جهت 3 به 5 کاتالیز کند. لذا می‌بایست مکانیسم دیگری برای سنتز این رشته از DNA وجود داشته باشد. این رشته DNA به نام رشته عمل کننده یا پیرو معروف است. در این حالت ابتدا دو رشته DNA در فواصل معینی از یکدیگر باز شده و آنزیم پریماز در آن محل قرار می‌گیرد و با استفاده از ریبونوکلئوتیدها ، RNA کوچکی ساخته می‌شود که RNA پرایمر نام دارد.

انتهای 3 این RNA کوچک که از روی الگوی DNA ساخته شده است، می‌تواند به آنزیم پلیمراز III امکان دهد تا دزاکسی ریبونوکلئوتیدها را به انتهای آن متصل کند. لذا در این رشته از مولکول DNA قطعاتی از DNA سنتز می‌شوند که قطعات اوکازاکی نام دارد. (اوکازاکی نخستین کسی بود که این قطعات سنتز شده DNA را با میکروسکوپ الکترونی مشاهده کرد).

در این حالت آنزیم پلیمراز I وارد عمل شده و به ترتیب یکی یکی ریبونوکلئوتیدها را در جهت 5 به 3 برداشته و به جای آنها نوکلئوتیدهای از انواع دزاکسی جایگزین می‌کند تا این که قطعات همه از نوع دزاوکسی شوند. سپس انتهای قطعات ساخته شده بوسیله آنزیم لیگاز به هم متصل شده و یک رشته ممتد DNA حاصل می‌شود. اندازه هر قطعه اوکازاکی حدود 1000 تا 2000 نوکلئوتید است.

ککاربرد های مهندسی ژنتیک



تصویر

 

دید کلی

با استفاده از فن‌آوری DNA نوترکیب ، مطالعه ساختمان و عملکرد ژن بسیار آسان شده است و جداسازی یک ژن از یک کروموزوم بزرگ نیاز دارد به:

  • روشهایی برای برش و دوختن قطعات DNA

  • وجود ناقلین کوچک DNA که قادر به تکثیر خود بوده و ژنهایی در داخل آنها قرار داده شود.

  • روشهایی برای ارائه ناقل حاوی DNA خارجی به سلولی که در آن بتواند تکثیر یافته و کلنی‌هایی را ایجاد کند.

  • روشهایی برای شناسایی سلولهای حاوی DNA مورد نظر.

    پیشرفتهای حاصل در این فن‌آوری ، در حال متحول نمودن بسیاری از دیدگاه‌های پزشکی ، کشاورزی و سایر صنایع می‌باشد.

    پیشرفتهای حاصل از دهها سال کار هزاران دانشمند در زمینه‌های ژنتیک ، بیوشیمی ، بیولوژی سلول و شیمی فیزیک در آزمایشگاههای متعدد گرد هم آمدند تا فن‌آوریهایی برای تعیین موقعیت ، جداسازی ، آماده سازی و مطالعه قطعات DNA مشتق از کروموزومهای بسیار بزرگتر را ایجاد نمایند. تاکنون فن‌آوریهای کلون سازی DNA ، فرصتهای غیر قابل تصوری را برای تعیین هویت و مطالعه ژنهایی فراهم نموده‌اند که تقریبا در هر فرآیند بیولوژیک شناخته شده ، نقش دارند. این روشهای جدید ، تحقیقات پایه ، کشاورزی ، پزشکی ، اکولوژی ، پزشکی قانونی و بسیاری از زمینه‌های دیگر را دگرگون کرده‌اند.

تخمیرهای میکروبی

تعدادی از محصولات مهم صنعتی بوسیله میکروارگانیزمها ساخته می‌شوند که از بین آنها ، آنتی بیوتیکها مهمترین گروه می‌باشند. بوسیله مهندسی ژنتیک می‌توان میکروارگانیزمهایی ایجاد کرد که آنتی بیوتیک بیشتری تولید کنند و یا مشتقی از آنتی بیوتیک اولیه را بسازند.


تصویر

 

واکسنهای ویروسی

واکسن ماده‌ای است که می‌تواند سیستم ایمنی را بر علیه یک عامل عفونی تحریک کند. معمولا از ویروسهای کشته شده به عنوان واکسن استفاده می‌شود، ولی همواره یک خطر احتمالی وجود دارد که ویروس بطور کامل غیر فعال نشده باشد. از آنجایی که معمولا قسمت فعال و ایمنی‌زایی ویروس ، پروتئینهای پوشش آن هستند، می‌توان پروتئینهای پوششی را به تنهایی و بدون قسمتهای دیگر تهیه کرد. برای این کار ژن مربوط به پروتئین پوششی را در یک باکتری و یا در یک ویروس غیر بیماری‌زا کلون می‌کنند و از آنها به عنوان واکسنهای بی‌خطر استفاده می‌نمایند.

تولید پروتئینهای خاص

تولید پروتئینهای خاص از نظر پزشکی و تجاری ارزش دارد. تولید تجاری پروتئینهای انسان از طریق استخراج از بافتها یا مایعات بدن غیر ممکن یا بسیار گران است. با کلون کردن ژنهای مربوط به این پروتئینها در باکتریها تولید تجاری این پروتئینها ، امکان‌پذیر می‌گردد.

حیوانات و گیاهان تغییر یافته

علاوه بر تولید محصولات ارزشمند بوسیله میکروبها ، از مهندسی ژنتیک می‌توان به منظور ایجاد گیاهان و جانوران تغییر یافته استفاده کرد. به این گیاهان و جانوران بطور کلی تغییر یافته ژنتیکی (Trasgenetic) ، گفته می‌شود. تغییرات ژنی این موجودات ، مواردی چون تولید محصولات بیشتر ، تغییر کیفیت گوشت و سبزیجات و تولید پروتئینهای خاص که بوسیله باکتریها ، نمی‌توان تولید کرد، را دربر می‌گیرد. این کار بطور کلی از طریق وارد کردن ژنهای نوترکیب در دوران جنینی به جانوران و در کشت بافت به گیاهان انجام می‌شود.


تصویر

 

بیوتکنولوژی محیط زیست

باکتریها به دلیل تنوع متابولیزمی گسترده ، دارای یک خزانه ژنتیکی بسیار غنی می‌باشند. در بعضی موارد در این خزانه ژنهایی یافت می‌شوند که مواد آلوده کننده محیط زیست را تجزیه می‌کنند. ژنهای تجزیه بیولوژیکی بسیاری از مواد زاید فاضلابهای شهری و پسابهای صنعتی ، از باکتریهای موجود در طبیعت جدا شده‌اند. از این ژنها می‌توان برای کاهش آلودگیهای محیط زیست استفاده کرد.

مثالی از این کار ، ژنهای تجزیه کننده حشره کشهای کلردار ، مانند 5,4,2- تری کلروفنوکسی استیک اسید ، کلروبنزن ، نفتالین ، تولوئن ، آنیلین و هیدروکربنهای مختلف دیگر می‌باشد. ژنهای مورد نظر از باکتریهای پسدوموناس ، آلکالیژنس و تعدادی از باکتریهای دیگر جدا شده و در پلاسمیدهای مختلف وارد شده است. همچنین پلاسمیدهایی ایجاد شده است که ژنهای تجزیه کننده چند ماده مختلف را بطور همزمان بر روی خود دارند.

تنظیم ژنها و ژن درمانی

استفاده اولیه مهندسی ژنتیک در تولید محصولات مفید صنعتی و یا بهبود تولید بود، ولی مطالعات اخیر بر روی کنترل ژنهای خاص بنا شده است. امروزه قسمت اعظم تحقیقات پایه در مهندسی ژنتیک بر روی Antisense RNA که نقش مهمی در تنظیم ژنتیکی بیان ژنها به عهده دارد، پایه گذاری شده است. همچنین مطالعات گسترده‌ای بر روی امکان درمان بیماریهای ژنتیکی از طریق وارد کردن ژن سالم یعنی ژن درمانی در حال انجام است.

تولید پروتئینها و هورمونهای کاربردی

یکی از کاربردهای عملی اولیه مهندسی ژنتیک تولید پروتئینهای مورد نظر بوسیله میکروارگانیزمهای سریع‌الرشد و تولید ارزان قیمت این پروتئینها بود. بسیاری از پروتئینها و پپتیدهای پستانداران ارزش دارویی زیاد دارند، ولی معمولا در مقادیر بسیار ناچیزی در بافتهای طبیعی وجود دارند و استخراج آنها مقرون به صرفه نمی‌باشد. این پروتئینها را می‌توان به راحتی در میکروارگانیزمها تولید کرد.


تصویر

 

تولید هورمونها

بسیاری از هورمونها ، پپتیدها و یا پروتئینهای کوچک هستند. این هورمونها در کنترل متابولیزم بدن پستاندارن و مخصوصا انسان استفاده‌های خاص و مهمی دارند. یکی از مثالهای این تولیدات ، تولید هورمون انسولین می‌باشد. هورمون انسولین انسانی اولین داروی تولید شده بوسیله مهندسی ژنتیک بود که مصرف عمومی پیدا کرد. انسولین هورمونی است که بوسیله غده لوزوالمعده ترشح می‌شود و کمبود آن باعث بیماری دیابت می‌گردد.

بیماری دیابت گریبانگیر میلیونها نفر در سراسر جهان است که روش استاندارد درمان آن ، تزریق منظم انسولین است. چون انسولین پستانداران مختلف تقریبا مشابه می‌باشد، در ابتدا از انسولین جدا شده از لوزوالمعده گاو و یا خوک استفاده می‌شد، ولی انسولین غیرانسانی به اندازه انسولین انسانی موثر نیست و هزینه خالص سازی نیز گران می‌باشد، لکن امروزه این هورمونها توسط مهندسی ژنتیک تولید می‌شوند.

لازم به ذکر است که تولید هورمونهایی مانند انسولین یک کار ساده مهندسی ژنتیک نیست که فقط شامل وارد کردن ژن مربوطه به داخل حامل و کلون کردن آن باشد، زیرا بسیاری از هورمونها فقط قطعات کوچکی از پلی پپتیدهای بزرگ تولید شده بوسیله ژنها می‌باشند.

چشم انداز

محصولات فن‌آوری DNA نوترکیب ، از پروتئینها تا موجودات مهندسی شده متفاوت می‌باشد. با این فن‌آوریها می‌توان مقادیر زیاد پروتئینها را برای مقاصد تجارتی تولید نمود. از میکروارگانیزمها می‌توان برای انجام کارهای اختصاصی استفاده نمود. با استفاده از مهندسی ژنتیک ، می‌توان صفاتی را در گیاهان و جانوران ایجاد کرد که برای کشاورزی و پزشکی مفید باشند. بعضی از محصولات این فن‌آوری برای استفاده مورد تائید قرار گرفته و تعداد زیادی در حال تکامل هستند. در طی چند سال اخیر ، مهندسی ژنتیک از یک فن‌آوری وعده دهنده به یک صنعت چند بیلیون دلاری تبدیل شده و بیشتر رشد آن در صنعت دارویی بوده است.

[ جمعه 6 / 1 / 1393برچسب:مهندسی,ژنتیک,مهندسی ژنتیک,کلون کردن,کلون,کاربرد,های,کاربرد ها, ] [ 10:4 ] [ zahir ] [ ]
مجله اینترنتی دانستنی ها ، عکس عاشقانه جدید ، اس ام اس های عاشقانه

آمارگیر وبلاگ